Formation of MultiPlanetary Systems

Success and Failure of Planetary Migration Theory
Hanno Rein @ JPL Pasadena, July 2012

Statistics of multiple planets (using iPhone App)

Available for free on the AppStore.

Radial velocity planets

Rein, Payne,Veras \& Ford (in press)

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near 4:3, 3:2, 2: 1
- Excess slightly outside of the exact commensurability

Recipe

Disk-Migration

Resonances

Migration in a non-turbulent disc

Planet formation

Gap opening criteria

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

Take home message I

planet + disc $=$ migration

Resonance capture

2:I Mean Motion Resonance

2:I Mean Motion Resonance

2:I Mean Motion Resonance

Resonant angles

Fast varying angles

$$
\lambda_{1}-\varpi_{1} \quad \lambda_{2}-\varpi_{2}
$$

Slowly varying angles

$$
\begin{aligned}
\phi_{1} & =\lambda_{2}-2 \lambda_{1}+\varpi_{2} \\
\phi_{2} & =\lambda_{2}-2 \lambda_{1}+\varpi_{1} \\
\Delta \varpi & =\varpi_{1}-\varpi_{2}
\end{aligned}
$$

Formation of GJ 876

N -body simulations

- Correct period ratio
- Correct equilibrium eccentricity
- Correct libration pattern
- Does not depend on details

Hydro simulations

- Consistent with N-body simulations
- More free parameters

Non-turbulent resonance capture: two planets

parameters of GJ 876

Take home message II

2 planets + migration $=$ resonance

HD 45364

HD45364

Pluto
Mercury
Mars
Venus
Earth
Neptune
Uranus
Saturn

Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances .2 $7: 8$

- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Formation scenario for HD45364

Rein, Papaloizou \& Kley 2010

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:I resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

Take home message III

Resonant systems tell us something about the (currently) unobservable formation phase.

HD200964

The impossible system?

Radial velocity curve of HD200964

- Two massive planets $1.8 M_{\text {Jup }}$ and $0.9 \mathrm{M}_{\text {Jup }}$
- Period ratio close to $4: 3$
- Another similar system, to be announced soon.

Plot by Matthew Payne

Stability of HD200964

Rein, Payne, Veras \& Ford (in press)

Standard disc migration doesn't work

- N-body simulations
- Smooth migration scenario with variable damping rates
- Not a single simulation ends up in 4:3 resonance
- 2:I and 3:2 resonances are possible

Hydrodynamical simulations

Rein, Payne, Veras \& Ford (in press)

Hydrodynamical simulations II

Rein, Payne, Veras \& Ford (in press)

Scattering of embryos

1:1 resonance

3:2 resonance

4:3 resonance

2:1 resonance

- Fine tuned initial conditions
- Small number of systems in 4:3 resonance form
- More systems end up in I:I resonances

Take home message IV

We don't understand everything*.

Migration in a turbulent disc

Kepler's transiting planet candidates

Rein, Payne, Veras \& Ford (in press)

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

semi-major axis

time

Rein \& Papaloizou 2009

Analytic growth rates for I planet

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Two planets: turbulent resonance capture

Rein \& Papaloizou 2009

Analytic growth rates for 2 planets

$$
\begin{aligned}
\frac{\left(\Delta \phi_{1}\right)^{2}}{(p+1)^{2}} & =\frac{9 \gamma_{f}}{a_{1}^{2} \omega_{l f}^{2}} D t \\
(\Delta(\Delta \varpi))^{2} & =\frac{5 \gamma_{s}}{4 a_{1}^{2} n_{1}^{2} e_{1}^{2}} D t
\end{aligned}
$$

Rein \& Papaloizou 2009

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Modification of libration patterns

- HDI283II has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

Take home message V

Small mass planets might show signs of stochastic migration.

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006, NASA/JPL-Caltech/Space Science Institute

Random walk

REBOUND code, Rein \& Papaloizou 2010, Crida et al 2010

Conclusions

Conclusions

Formation of multi-planetary systems

The number of multi-planetary systems increases almost every week.
Kepler discovered a large number of planets but most are not suitable for a detailed individual analysis.

Multi-planetary system provide insight in otherwise unobservable formation phase.
We already understand many details of the migration history of exoplanets.
GJ876 formed in the presence of a disc with dissipative forces
HD45364 formed in a massive disc
HDI283II formed in a turbulent disc
HD200964 did not form at all
Kepler planets formed in a disk, pushed out of resonance by a variety of mechanisms
.... not the end of the story

