

Formation of Multi-Planetary Systems

Success and Failure of Planetary Migration Theory

Hanno Rein @ JPL Pasadena, July 2012

Statistics of multiple planets (using iPhone App)

Available for free on the AppStore.

Radial velocity planets

Most prominent features at 4:1, 3:1, 2:1, 3:2

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near 4:3, 3:2, 2:1
- Excess slightly outside of the exact commensurability

Disk-Migration

Resonances

Migration in a non-turbulent disc

Planet formation

Image credit: NASA/JPL-Caltech

Crida et al 2006

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

planet + disc = migration

Resonance capture

2:1 Mean Motion Resonance

2:1 Mean Motion Resonance

2:1 Mean Motion Resonance

Resonant angles

Fast varying angles $\lambda_1-arpi_1 \qquad \lambda_2-arpi_2$

Slowly varying angles

$$\phi_1 = \lambda_2 - 2\lambda_1 + \varpi_2$$

$$\phi_2 = \lambda_2 - 2\lambda_1 + \varpi_1$$

$$\Delta \varpi = \varpi_1 - \varpi_2$$

Formation of GJ 876

N-body simulations

- Correct period ratio
- Correct equilibrium eccentricity
- Correct libration pattern
- Does not depend on details

Hydro simulations

- Consistent with N-body simulations
- More free parameters

Lee & Peale 2002, Kley et al. 2004

Non-turbulent resonance capture: two planets

parameters of GJ 876

2 planets + migration = resonance

HD45364

Correia et al 2009, Visual Exoplanet Catalogue

Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances
- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Rein, Papaloizou & Kley 2010

Formation scenario for HD45364

Rein, Papaloizou & Kley 2010

المراجع والمراجع والمراجع

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:1 resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Rein, Papaloizou & Kley 2010

Formation scenario leads to a better 'fit'

Rein, Papaloizou & Kley 2010

Resonant systems tell us something about the (currently) unobservable formation phase.

HD200964 The impossible system?

Radial velocity curve of HD200964

- Two massive planets 1.8 M_{Jup} and 0.9 M_{Jup}
- Period ratio close to 4:3
- Another similar system, to be announced soon.

Plot by Matthew Payne

Stability of HD200964

Standard disc migration doesn't work

- N-body simulations
- Smooth migration scenario with variable damping rates
- Not a single simulation ends up in 4:3 resonance
- 2:1 and 3:2 resonances are possible

Hydrodynamical simulations

Hydrodynamical simulations II

Scattering of embryos

- Fine tuned initial conditions
- Small number of systems in 4:3 resonance form
- More systems end up in I:1 resonances

We don't understand everything*.

Migration in a turbulent disc

Kepler's transiting planet candidates

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson & Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

Analytic growth rates for 1 planet

$$(\Delta a)^2 = 4\frac{Dt}{n^2}$$

$$(\Delta \varpi)^2 = \frac{2.5}{e^2}\frac{\gamma Dt}{n^2 a^2}$$

$$(\Delta e)^2 = 2.5\frac{\gamma Dt}{n^2 a^2}$$

Rein & Papaloizou 2009, Adams et al 2009, Rein 2010

time [years]

Two planets: turbulent resonance capture

Analytic growth rates for 2 planets

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Modification of libration patterns

- HD128311 has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

Small mass planets might show signs of stochastic migration.

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006, NASA/JPL-Caltech/Space Science Institute

Random walk

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010

Conclusions

Formation of multi-planetary systems

The number of multi-planetary systems increases almost every week.

Kepler discovered a large number of planets but most are not suitable for a detailed individual analysis.

Multi-planetary system provide insight in otherwise unobservable formation phase. We already understand many details of the migration history of exoplanets.

GJ876	formed in the presence of a disc with dissipative forces
HD45364	formed in a massive disc
HD128311	formed in a turbulent disc
HD200964	did not form at all
Kepler planets	formed in a disk, pushed out of resonance by a variety of mechanisms

.... not the end of the story